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INTRODUCTION

When there is a simultaneous demand upon the same resource by two populations. and
the resource is in insufficient supply to meet the demands of both species. interspecific
competition accurs. The major forms of competition in fungi are defined by the types of
interactions between competing species. In the earlier edition of this book Professor
Lockwood and | attempted to identifv and categorize examples of fungal competition
either as “exploitation competition”™ or as “interference competition” (Lockwood. 1981;
Wicklow, 1981a). something ecologists have done for larger organisms (McNaughton
and Wolf, 1973; Schoener, 1983). With exploitation competition an individual depletes
the resource, depriving others of benefits to be gained from those resources, but does
not reduce the probability that another individual can exploit the remaining resource
pool. In other words. competition for the remaining resource is unaffected. According to
Schoener (1983), exploitation competition is the most common form of competition
identified in studies of larger organisms.

Interference competitors influence access to the resource through some form of
behavioral or chemical interaction between individuals prior to actual use of the
resource. For example, both territorial behavior in animal populations and allelopathy in
plant communities restrict competitor access to a resource in a spatally defined area
(Brown, 1964; Rice, 1974). Resources allocated to territorial defense help to ensure
thart certain initial substrate resources never become so reduced by competitors that the
population can no longer survive or reproduce. Antibiosis is generally recognized as the
principal mechanism cf interference competition by which fungi exclude other organ-
isms from potentially available resources (Brian, 1957; Park, 1967; Wicklow, 1981a;
Fravel, 1988).

Cooke and Ravner (1984) suggest that it is inadvisable and misleading to use the
terms exploitation and interference competition when considering competition among
fungi. They argue that during resource depletion many mveelial fungi restrict the access
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of others as a result of either efficient nutrient uptake through densely branching hyphal
svstems or via antagonism. Their statement clearly identifies exploitation competition
as “efficient nutrient uptake™ and interference competition as “antagonism.” There is no
disagreement that both mechanisms mav operate simultaneously (Wicklow, 1981a).

Cooke and Ravner (1984) also point out that a hyphal network. by its physical
presence alone, is capable of stopping fungal hyphae from invading the underlying sub-
. strate. For example, Xv/aria hypoxylon forms pseudosclerotial plates on precolonized
beech (Fagus sylvaticd) blocks upon contact with the white rot fungus Corvolus versicolor
(Ravner and Boddy, 1988). Until their physical removal, the pseudosclerotial plates
were capable of stopping Corvolus versicolor hyphae from invading the beech block.
Apparently, Xylaria hypoxylon was unable to form a second pseudosclerotial plate in
active opposition to Coriofus versicolor. In this example of interference competition, com-
petitor access to the resource was restricted by Xvlaria Aypoxvion.

Enlightened interpretation of the adaptive behaviors of wood decay fungi should
invite new research on the chemical signals and genetic regulatory mechanisms that
enable a fungus to switch among growth forms effective in exploration. primary resource
capture, or defense (Rayner and Boddy, 1988). Odum (1971, p. 32) recognized that
organic substances released into the environment during decomposition may have pro-
found effects on the growth of other organisms in the ecosystem, *...extracellular
metabolites and waste products may be important chemical regulators which coordinate
units of the ecosvstem and help explain both the equilibria and the succession of
species.” For example, allelochemicals may coordinate late successional species in
planktonic communities by serving as cues that trigger physiological responses in recep-
tor organisms to an improving or deteriorating environment {Lewis, 1986). This
allelochemical-signal hypothesis credits phytoplankton cells with physiological recogni-
tion mechanisms, implving that cells have evolved a certain amount of physiological
programing based on allelochemical cues. It seems likely that fungi may also be geneti-
cally programmed to respond to decomposition products, antibiotics or volatiles gen-
erated within their natural microhabitats.

ANTIBIOSIS

Soil microhabitats in which nutrients are abundant, such as those associated with freshly
incorporated organic detritus and seed or root exudates, are recognized as sites where
antibiosis mav occur in nature (Brian, 1957; Brock, 1966: Wicklow, 1981a). In such
microhabitats, antibiotics produced by an inital fungal colonist mav act to exclude other
potential colonists. The literature of phytopathology is rich with examples showing an
association between diminished growth or lack of pathogenicity by a soilborne root-
infecting fungus in response to the antagonistic properties of certain saprophvtic fungi
from the rhizosphere (Baker and Cook, 1974; Cook and Baker, 1983; Fravel, 1988).
Antibiotics produced by ectomycorrhizal fungi may act as a chemical barrier protecting
tree roots against phytopathogens such as Fusarium oxysporum or in limiting access of
other ectomycorrhizal species (Duchesne et al., 1989; Kope and Fortin, 1989, 1990;
Marx, 1973: Paulitz and Linderman, 1991).

Some fungi that demonstrate antagonism to root-infecting fungal pathogens when
paired in laboratory culture may or may not protect plants when applied as agents of
biocontrol (Fravel, 1988). The rhizosphere environment may not support an antagonist
population in large enough numbers to produce effective quantities of an antibiotic or
the resources required for antibiotic production may differ among plant cultivars or soil
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rvpes. Proof that a given antagonism is due to the production of an antibiotic can be
obtained onlyv If the antibiotic is isolated and purified and the purified marerial is shown
to have the same kind of activity against the test organism (Brock, 1966).

It should be noted that until recently (Thomashow et al., 1990) antibiotics had not
been detected in rhizosphere soil (Williams and Vickers, 1986) and that previous ‘obser-
vations' of antibiotic activity in the rhizosphere were based on indirect evidence. For
example, prolonged saprophvric survival of a root-infecting fungus (Cephalosporium gram-
inearum) in dead host tissues that were invaded during the parasitic phase of growth was
associated with fungal ability to produce antibiotics (Bruehl et al., 1969). A UV-induced
gliovirin-negative mutant of Glocladium virens did not control Pythium ultimum on cotton
seedlings as well as the gliovirin- producing parental strain (Howell and Stipanovic,
1983). Other mutants of Glocladium wirens, that were unable to parasitize Rhizocronia
solani, produced gliovirin and were able to suppress Rhizoctonia-induced damping-off of
cotton in field sod (Howell, 1987). In a related example, production of the antibiotic
chetomin by Chaeromium globosum in vitro was positively correlated with antagonism
against the pathogen Fenruria inequalis on apple seedlings (Cullen and Andrews, 1984).
The authors considered this indirect evidence for antibiosis as the mechanism of anta-
gonism. Duchesne et al. (1989) measured the “fungitoxicity of the rhizosphere™ follow-
ing inoculation with the ectomvcorrhizal fungus Paxillus involutus as an indirect measure
of antibiotic production.

The first isolation of an antibiotic (phenazine-1-carboxvlic acid) from the rhizo-
sphere of plants grown in natural soil was recently accomplished by Thomashow et al.
(1990). Phenazine-1-carboxvlate antibiotic-producing strains of Psewdomonas fluorescens
2-79 (NRRL B-15132) are more competitive in nature, as demonstrated by their ability
to protect plant roots from a major root disease of wheat caused by Gaeumannomyces
graminis var. tritici (Thomashow and Weller, 1988). Mutants defective only in phena-
zine synthesis, generated by transposon mutagenesis, were non-inhibitory to Gaesman-
nomyces graminis in vitro and substanually less effective in disease suppression in green-
house tests.

Profesor Starmer and his colleagues are attempting to evaluate the role of Killer
veasts in the organization of natural communities of veast species associated with stem
necroses of various cacti, slime fluxes of trees and decaving ussue of fruits (Starmer et
al., 1987). Cactophilic Killer veasts such as Pickia kluyvers secrete proteins that are toxic
to other veasts (Zorg et al., 1988). Starmer et al. (1987) suggest that particular Pickia
klyyveri genotypes may function in excluding other veasts from the community. Here
the mechanism of interference competition is clear and unambiguous.

Fungal toxins can prevent or reduce loss of resource or self to animals (Janzen,
1977; Wicklow, 1988). By characterizing seed-infesting toxigenic fungi as “seed eaters,”
Janzen has challenged microbiologists to broaden their ecological perception of such
microorganisms to that of direct competitors of much larger seed-eating animals. He
persuasively argues that because the seed-eating fungus faces losing both life and
resource, such microorganisms are often under strong selection to render seeds as
objectionable or unusable as possible to larger organisms in the shortest possible time.
Janzen considered the toxic secondary metabolites produced bv many seed-infecting
fungi as analogous to chemical defenses of higher plants in that they serve to deter
potential predators. Examples in which mvcotoxins and other secondary metabolites
produced by fungi could affect insects negatively have been reviewed by Wright et al.
(1982) and Dowd (1991). The effects recorded include growth retardation, reduced
pupal and adult size, lower fecundity, loss of fertility, increased mortality, repellency,
and genetic changes.
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Ecologists have asked whether antibiotics and other toxic secondary metabolites
produced by fungi might offer some fungal species relative protection against potential
predators. such as nematodes and arthropods. that consume soil and litter fungl (Whiz-
taker and Feeney, 1971). Selective grazing by invertebrate mycophagists can influence
the proportions of bacteria and fungi colonizing a resource and may affect the subse-

~quent microbial succession and the rate of litcer decay (Parkinson et al.. 1979: Ander-
son and Ineson.. 1984: Newell, 1984a, 1984b: Arsuffi and Suberkropp. 1983: Shaw,
1985 and this volume; Ingham, this volume). Fungi may allocate chemical defenses to
protect structures critical to their survival, such as fruit bodies or sclerotia (Wicklow and
Cole, 1982: Wicklow, 1988). Our investigations of these chemical defense svstems has
led to the discovery of new compounds showing significant anti-insectan activiey (Wick-
low et al., 1988: Gloer et al.. 1988; Gloer et al., 1989; TePaske et al., 1989).

COLONIZATION STRATEGIES AND ANTAGONISM

Interference competition has probably been a selective force in guiding the evolution of
fungal colonization strategies and in determining how different fungal populations
become organized into communities. In recent vears, mvcologists have attempted to
relate the behavior of populations of single fungal species to their colonization stra-
tegies, based on the svstem Grime (1979) developed for higher plants (Pugh, 1980:
Cooke and Ravner, 1984; Widden and Scattolin, 1988; Andrews, this volume) and to
apply the theory of r- and K-selection (MacArthur and Wilson, 1967) to the ecology of
plant pathogens (Andrews and Rouse, 1982). Garrett (1970) had earlier associated
some of the same behaviors for fungal substrate groups from soil that contribute to their
“competitive saprophvtic ability.” Coates et al., (1981) recognized that “Genecological
strategies” (Ravner, 1989) have also left their imprint on fungal community structure
and resource use. Until recently mvcologists had not fully appreciated the ecological
implications of intraspecific mycelial interactions between thalli of different genotypes.
Somatic incompatbility systems, can be strongly antagonistic and produce lvtic reac-
tions (Boddv and Ravner, 1982). Vegetative incompatibility not only contributes to the
genetic variability in fungal populations but can also affect rates of substrate decomposi-
tion, as illustrated by the distinct zones of nondecaved wood separating adjacent
colonies (Ravner and Boddy, 1988). It would be interesting to know if such hyphal
compatibility reactions are important in determining the course of mixed-culture solid
substrate fermentations (Wicklow, 1989). The phvsiological mechanisms producing
these incompatibility reactions are unknown, but some form of premature hvphal senes-
cence has been suggested (Rayner and Boddy, 1988). Premature hyphal senescence has
also been associated with the phenomenon called “hyphal interference” (lkediugwu et
al., 1970; lkediugwu and Webster, 1970a, 1970b). An even more rapid hvphal autolysis
“fast lysis” is induced at short distances by volatiles of the mycoparasite Pythium oligan-
drum with its fungal host (Bradshaw-Smith et al., 1991).

In my earlier review (Wicklow, 1981a) | offered examples of how fungal antagon-
ism might contribute to the organization of fungal communities, either by limiting com-
petitor access to a resource or through species replacement. An effort was made to
relate patterns of fungal colonization of natural substrates and models describing vegeta-
tional change in plant communities. The inhibition mode! of Connell and Slayter (1977)
describes patterns of fungal colonization in which early colonists gain a foothold on a
substrate, suppress the growth of others present, and inhibit the invasion of later colon-
ists. According to Cooke and Rayner (1984) these species combine effective “primary
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resource capture’ (the sequestration of resources before thev are taken by a competitor)
with an ability to defend their “domain.” Later successional species can invade and
grow only when the dominating residents are damaged or killed. thus releasing
resources. A competitive hierarchy, is a type of succession in which later successional
plants are increasingly capable of dominating carli;r successional species, as a regulatory
process in determining the sequence of colonists in a successional sere (Horn. 1977).
There are numerous fragmentary observations recorded in the mycological licerature
which suggest that (1) fungal antagonism may be an important mechanism of species
replacement during substrate colonization and (2) such a competitive hierarchy may be
operative in delimiting patterns of fungal colonization and sporocarp appearance (Wick-
low, 1981a; Wicklow, this volume). Coates and Ravner (1985) and Chapela et al.
(1988) also recognized that it is possible to place species of wood decay fungi which are
dominant at different stages of community development into what thev describe as a
“combative hierarchyv.” The mechanism of species replacement mav involve antibiosis
(Wicklow, 1981a) and/or selective mvcoparasitism (Ravner et al., 1987). Patterns of
species abundance for a community of marine fungi colonizing submerged wood panels
were also found to be associated with an organisms position in a competitive hierarchy,
based on laboratory tests (Miller et al., 1983; Strongman et al., 1987). Miller (1991) is
also credited for emphasizing ecologically relevant parameters in the design of fermenta-
tion environments that promote antibiotic production in marine fungi. By attempting to
understand the relationship between the antagonistic properties of fungi and their eco-
logical status in a community it may be possible to design relevant biocontrol strategies
or guide the search for fungal metabolites with predictable biological activities
(Wicklow, 1981a; 1988).

EXPERIMENTAL REQUIREMENTS

The importance of interspecific competition in the organization of biotic communities in
nature is a subject that has stirred considerable recent debate among ecologists who
differ in their “equilibrium” versus “stochastic” perspectives (Connell, 1983: Roughgar-
den, 1983; Schoener, 1983; Strong, 1983, this volume). Fungal ecology has a good
deal to sav about fungal competition, but has vet to contribute much to this debate.
Might this be explained, in part, because the mycological literature is so foreign to ecol-
ogists who study large organisms, or because mycologists have not satisfactorily demon-
strated that competition among fungi occurs in nature? Microbial ecologists are the first
to recognize that, while it is important to find evidence for competition in natural
ecosvstems, it is also very difficult to study the competitive abilities of microbes in the
natural environment (Alexander, 1971; Lacev, 1979; Veldkamp et al., 1984). Ecolo-
gists stress that empirical evidence for competition must come from field experiments in
natural ecosvstems where the historic occurrence of coevolution or interspecific com-
petition is likely to produce communities in some state of equilibrium (Seifert, 1981;
Starmer et al., 1987). The design of such field experiments is critical, and microbial
ecologists should carefullv consider these ecological criteria and assess the feasibility of
applving such criteria to the organisms or systems thev are studving. Ideally, a field
experiment to demonstrate the occurrence of interspecific competition should measure
the influence of interspecific competition on a population relative to that of other
relevant processes affecting it, such as weather, predation, parasitism, mutualism,
intraspecific competition, or disturbances (Connell, 1983). In such field experiments,
the degree of exploitation or interference competition is experimentally manipulated by
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changing the population densities of the competitors. Such a field experiment should
involve changing the abundance of one potential competitor, species (A) followed by 3
comparison of the response (e.g.. change in density. fecundity, or niche) of the other
species (B) to its behavior in an unmanipulated control. If competition is affecting a
species, there should be a statistically significant response in the opposite direction 1o
the change in abundance of a potential competitor. A species may be self-limited, from
the effects of the intraspecific competition, below the density necessary to eliminate a
competitor. Therefore, to distinguish interspecific competition from intraspecific com-
petition, the density of each species needs to be varied while keeping the density of the
other species constant or removing it entirely (Connell, 1983; Schoener, 1983).
Intraspecific competition was found to be stronger than interspecific competition in
three out of four of the controlled field experiments in which it was judged that com-
petition had been demonstrated (Connell, 1983).

Experiments, in which empty environments are created and the natural coloniza-
tion of such environments is followed (i.e. fungal succession), do not provide an ade-
quate measure of competition, because the competitors are not being manipulated
directly (Schoener, 1983). The mvcological literature offers numerous such examples of
competition for substrate (i.e., cut stumps, surfaces of newly emergent leaves, buried
cellophane or wheat straw, steam-sterilized greenhouse soil, etc.) (Tribe, 1966: Garrett,
1970; Wicklow, 1981b; Cook and Baker, 1983; Cooke and Ravner, 1984; Chung and
Hoitink, 1990). Schoener (1983) is also critical of field experiments that claim to
demonstrate interspecific competition when densities of competing popuiations are
forced to levels higher than those occurring in nature. This occurs commonly in agricul-
tural ecosvstems when fungi are applied as agents of biocontrol (Rishbeth, 1963; Kom-
medahl and Windels, 1981; Papavizas, 1985). Strong (1983) points out that in ecologi-
cal research, there may be simultaneous but different processes that give signals so simi-
lar that the products of individual phenomena are difficult to distinguish. He recom-
mends use of the null hypothesis because it focuses on the pattern, outcome, or change
one should expect if interspecific competition were not operating.

Unfortunately, none of the numerous and varied examples of fungal competition
offered by Baker and Cook (1974), Cook and Baker, (1983); Cooke and Ravner (1984),
Lockwood (1981) or Wicklow (1981a) could satisfy the necessary experimental criteria
outlined by Connell (1983) or Schoener (1983) to demonstrate the occurrence of
interspecific competition in natural ecosystems. However, a study involving lichenized
fungi meets most of these requirements. Armstrong (1983) studied competition
between foliose lichens growing on slate by using de Wit experimental design. Frag-
ments of three species were cut from the edges of large lichen thalli and glued to pieces
of slate in either monoculture or together in three mixtures of differing proportions, the
density remaining constant in each treatment. After three vears of continuous field
exposure, the area of each species was used as an estimate of growth. Parmelia conspersa
showed a significantly greater growth rate in monoculture and proved to be the dom-
inant competitor in communities with either Parmelia gloratula or Physcia orbicularis.
Colony-forming units representing potentially competing species of bacteria or fungi
might similarly be applied to the exposed surfaces of leaves or plant litter, and their
comparative growth and reproductive rates could be determined in situ.

Coprophilous fungal communities are particularly well suited to ecological experi-
ments on fungal species competition and resource use {Yocom and Wicklow, 1980;
Wicklow and Yocom, 1981; Wicklow, this volume). Numbers of fungal sporocarps/
spores produced on dung surfaces can be used as a measure of species fitness and com-
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petitive ability. However, to determine if competition is occurring between two fungal
species. one should attempt to vary initial spore densities within the fecal pellets experi-
mentally. Whether other fungal communities can serve as experimental systems for
demonstrating the relative importance of competition will depend on the ingenuity of
mycologists in designing field experiments that adhere to the rigorous experimental cri-
teria described.

CONCLUSIONS

Interference competition results from both interspecific and intraspecific mvcelial
interactions, or from interactions between fungi and larger oganisms (i.e., fungivorous
arthropods) for the same resource. Examples provided above show how fungal antagon-
ism has affected the organization of fungal communities, either by limiting competitor
access to a resource or through species replacement. However, empirical evidence for
competition in natural ecosystems, based on strict ecological criteria, is wanting. Under-
standing the relationships between the antagonistic properties of fungi and their ecologi-
cal status tn a community can enable one to develop effective strategies for biological
control or to focus a search for fungal metabolites targeted against specific competitors
and pest organisms.
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